

SOFTWARE PROJECT ESTIMATION

```
Overview
```

```
Resources
```

```
Decomposition Techniques
```

```
Using LOC or FP to Estimate Effort
```

```
Effort Estimation by Function
```

```
Effort Estimation by Task
```

```
Empirical Estimation Models
```

```
HUL COCOMO
```

```
Putman Estimation Model
```

Overview

Estimation of:

- resources
- costs
- schedules

Requires:

- experience
- historical information
- quantitative measures of qualitative data

Software Engineering

Resources

Planning Task 1: Software Scope

- 1. Statement of software scope must be bounded
- 2. Software scope describes:

Planning Task 2: Estimation of Needed Resources

Specify:

Availability

Duration of tasks

Resources, Continued

Reuse - A Resource

Two rules:

1. If existing software meets requirements, then

acquire and use it!

2. If existing software can meet requirements with some modification, then

be careful!

The cost of modification can exceed the cost of new development!

Decomposition Techniques

LOC and FP Estimation

Decomposition Techniques, Continued

LOC and FP Estimation

The idea is that the person planning the software project:

creates a bounded statement of the scope of the software

decomposes the scope into smaller subfunctions

estimates LOC or FP for each subfunction

applies baseline productivity metrics (e.g., LOC/person-month) to LOC or FP estimates to produce a cost or effort estimate for each subfunction

combines estimates for each subfunction to derive estimates for the entire project

Decomposition Techniques, Continued

Differences Between LOC and FP

FP estimation techniques require less detail than LOC

LOC is estimate directly while FP is estimated indirectly

Using LOC or FP to Estimate Effort

1. Estimate LOC or FP values for each subfunction

Use historical data (or intuition, if necessary)

Three estimates: optimistic (o), most likely (m), and pessimistic (b)

- 2. Calculate expected value for each subfunction $E = \frac{a+4m+b}{2}$
- 3. Apply productivity data to get effort to be expended; two ways:
 - 1. Total expected LOC or FP for all subfunctions and divide this by the expected LOC or FP completed per person-month (estimated from past projects); example:
 - *Effort = 310 expected FP for project/5.5 expected FP per person-month*

= 56 person-months

2. Multiply each subfunction LOC or FP by the adjusted productivity value (based on the estimated complexity of the function) and sum the results for all subfunctions in the project

Effort Estimation by Function

CAD Program Example

Function	Optimistic	Most Likely	Pessimistic	Expected	\$/Line	Line/Month	Cost	Months
User interface control	1800	2400	2650	2,340	\$14	315	\$ 32,760	7.4
2-D geometric analysis	4100	5200	7400	5,380	\$20	220	\$107,600	24.4
3-D geometric analysis	4600	6900	8600	6,800	\$20	220	\$136,000	30.9
Data structure mgmt	2950	3400	3600	3,350	\$18	240	\$ 60,300	13.9
Graphics display	4050	4900	6200	4,950	\$22	200	\$108,900	24.7
Peripheral control	2000	2100	2450	2,140	\$28	140	\$ 59,920	15.2
Design analysis	6600	8500	9800	8,400	\$18	300	\$151,200	28.0
Estimated Effort 33,360 \$656,680 \$656,680 \$656,680 144. Estimated Effort: 144.5 person-months								144.5

Effort Estimation by Task

CAD Program Example

Function	RA	Design	Code	Test	Total
User interface control	1.0	2.0	0.5	3.5	7.0
2-D geometric analysis	2.0	10.0	4.5	9.5	26.0
3-D geometric analysis	2.5	12.0	6.0	11.0	31.5
Data structure mgmt	2.0	6.0	3.0	4.0	15.0
Graphics display	1.5	11.0	4.0	10.5	27.0
Peripheral control	1.5	6.0	3.5	5.0	16.0
Design analysis	4.0	14.0	5.0	7.0	30.0
Total	14.5	61.0	26.5	50.5	152.5
Estimated Cost: \$ 70	8, 0 75	5200	4800	4250	4500
Estimated Effort: 15	2 ,,5 ,p o r	son_mont	hs 112,625	227,250	708,075

Software Engineering

Empirical Estimation Models

Static single-variable model (example: COCOMO)

Resourc *e cx*^d

where

x is the estimated characteristic (LOC, FP, effort, etc.)

c and d are constants derived from data collected from past projects

Static multivariable model

Resource *cx dy* ...

where

x, y, ... and c, d, ... are as above

Dynamic multivariable model

Project resource requirements are determined over a series of time steps Theoretical (example: Putman Estimation Model)

Uses equations derived from hypothesized expenditure curves

2C - 15

СОСОМО

Basic model:

Effort = $a(b)KLOC^{b(b)}$ person - months Development_Time = $c(b)Effort^{d(b)}$ months

a(b), b(b), c(b), and d(b) are determined from the table:

Software Project	a(b)	b(b)	c(b)	d(b)
Organic	2.4	1.05	2.5	0.38
Semidetached	3.0	1.12	2.5	0.35
Embedded	3.6	1.20	2.5	0.32

COCOMO, Continued

Example of COCOMO basic model on the CAD program:

Effort = 3.0 (LOC) ^ 1.12

= 3.0 (33.3) ^ 1.12

= 152 person-months

Development Time = 2.5 (Effort) ^ 0.35

= 2.5 (152) ^ 0.35

= 14.5 months

Thus, estimated number of people N is:

N = Effort / Development Time

= 152 / 14.5

= 11 people

Putman Estimation Model

Data is derived from large projects

Model is applicable to smaller projects as well

The distribution of effort is described by the Rayleigh-Norden curve

